Sains Malaysiana 52(11)(2023): 3163-3176

http://doi.org/10.17576/jsm-2023-5211-11

 

Penghasilan Karbon Aktif melalui Pengaktifan Wap Biojisim Serat Panjang Tandan Sawit Kosong

(Production of Activated Carbon via Steam Activation of Empty Fruit Bunch Long Fibre Biomass)

 

MUHAMMAD NUR HAKIMI ZABIDI & DARFIZZI DERAWI*

 

Kluster Teknologi Oleokimia, Jabatan Sains Kimia, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 15 July 2023/Accepted: 25 October 2023

 

Abstrak

Longgokan tandan sawit kosong (EFB) di Malaysia memerlukan perancangan yang lebih teliti dalam menukarkan sisa biojisim kepada produk bernilai tinggi. Penghasilan karbon aktif daripada biojisim EFB merupakan salah satu inisiatif yang sangat signifikan dalam menghasilkan produk bahan termaju ini. Serat panjang EFB ditukarkan kepada karbon aktif melalui kaedah pengaktifan stim. Pengaktifan stim secara suntikan wap air ini telah dijalankan pada suhu 700, 750, 800, 900 dan 1000 °C selama 60 minit. Serbuk EFB, bio-arang dan karbon aktif yang dihasilkan dalam kajian ini telah menjalani analisis pencirian menggunakan kaedah  penjerapan fizikal. Karbon aktif terhasil pada suhu 800 °C memberikan luas permukaan (561.0 m2/g) dan isi padu liang (0.2800 cm3/g) tertinggi dan bersifat mesoliang (2.9 nm) berbanding karbon aktif yang terhasil pada suhu lain. Oleh itu, suhu 800 °C merupakan suhu optimum bagi penghasilan karbon aktif dalam kajian ini. Sehubungan itu, karbon aktif  800 °C dilakukan pencirian selanjutnya menggunakan XRD, FTIR dan FESEM. Struktur amorfus dapat dilihat berdasarkan pencirian XRD. Melalui analisis FTIR, karbon aktif ini mengandungi beberapa kumpulan berfungsi seperti alifatik-CH, C-O dan C=O. Kemunculan puncak penyerapan getaran kumpulan C=O pada karbon aktif ini selepas pengaktifan wap dapat dikaitkan dengan tindak balas pengoksidaan bio-arang yang mana wap air bertindak sebagai agen pengoksidaan. Tambahan pula, morfologi permukaannya oleh FESEM menunjukkan permukaan berliang berbentuk bulat dan susunannya kurang teratur. Justeru, kajian berkaitan penghasilan karbon aktif daripada biojisim tandan sawit kosong melalui pengaktifan stim telah dijalankan. Penukaran biojisim EFB kepada karbon aktif menyokong kepada usaha membangunkan teknologi hijau dan kitaran ekonomi mampan.

 

Kata kunci: Biojisim tandan sawit kosong; karbon aktif; pengaktifan wap

 

Abstract

The abundance of empty oil palm bunches (EFB) in Malaysia requires more careful planning in converting biomass waste into high-value products. The production of activated carbon from EFB biomass is one of the most significant initiatives in producing this advanced material product. EFB fibers are converted to activated carbon through a steam activation method. Steam activation by water vapor injection was carried out at temperatures of 700, 750, 800, 900 and 1000 °C for 60 min. Empty palm bunch powder, bio-charcoal and all the activated carbon produced in this study have undergone characterization analysis using the physical adsorption method. Activated carbon produced at a temperature of 800 °C exhibits the highest surface area (561.0 m2/g) and pore volume (0.2800 cm3/g) and is mesoporous (2.9 nm) compared to activated carbon produced at other temperatures. Therefore, 800 °C is the optimum temperature for producing activated carbon in this study. As such, activated carbon at 800 °C was further characterized using XRD, FTIR and FESEM. Amorphous structure can be seen based on XRD characterization. Through FTIR analysis, this activated carbon contains several functional groups such as aliphatic-CH, C-O, and C=O. The appearance of the peak of C=O group vibration absorption in this activated carbon after steam activation can be attributed to the oxidation reaction of bio-charcoal where steam acts as the oxidizing agent. Furthermore, its surface morphology by FESEM shows a porous surface that is round and less regular in arrangement.Therefore, a study related to the production of activated carbon from the biomass of empty palm bunches through steam activation was carried out. Conversion of EFB biomass to activated carbon supports efforts to develop green technologies and sustainable circular economic.

 

Keywords: Activated carbon; biomass empty fruit bunches; steam activation

 

REFERENCES

Acosta, R., Fierro, V., de Yuso, A.M., Nabarlatz, D. & Celzard, A. 2016. Tetracycline adsorption onto activated carbons produced by KOH activation of tyre pyrolysis char. Chemosphere 149: 168-176.

Alam, M.Z., Muyibi, S.A. & Kamaldin, N. 2008. Production of activated carbon from oil palm empty fruit bunches for removal of zinc. Twelfth International Water Technology Conference. hlm. 374-383.

Alhinai, M., Azad, A.K., Bakar, M.S.A. & Phusunti, N. 2018. Characterisation and thermochemical conversion of rice husk for biochar production. International Journal of Renewable Energy Sources 8: 1648-1656.

Alvarez, J., Lopez, G., Amutio, M., Bilbao, J. & Olazar, M. 2015. Physical activation of rice husk pyrolysis char for the production of high surface area activated carbons. Industrial & Engineering Chemistry Research 54(29): 7241-7250.

Ayinla, R.T., Dennis, J.O., Zaid, H.M., Sanusi, Y.K., Usman, F. & Adebayo, L.L. 2019. A review of technical advances of recent palm bio-waste conversion to activated carbon for energy storage. Journal of Cleaner Production 229: 1427-1442.

Elias, M.A., Hadibarata, T. & Sathishkumar, P. 2021. Modified oil palm industry solid waste as a potential adsorbent for lead removal. Environmental Chemistry and Ecotoxicology 3: 1-7.

Fu, J., Zhang, J., Jin, C., Wang, Z., Wang, T., Cheng, X. & Ma, C. 2020. Effects of temperature, oxygen and steam on pore structure characteristics of coconut husk activated carbon powders prepared by one-step rapid pyrolysis activation process. Bioresource Technology 310: 123413-123421.

Gao, L., Dong, F.Q., Dai, Q.W., Zhong, G.Q., Halik, U. & Lee, D.J. 2016. Coal tar residues based activated carbon: Preparation and characterization. Journal of the Taiwan Institute of Chemical Engineering 63: 166-169.

González-García, P. 2018. Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renewable and Sustainable Energy Reviews 82: 1393-1414.

Hamzah, N., Tokimatsu, K. & Yoshikawa, K. 2019. Solid fuel from oil palm biomass residues and municipal solid waste by hydrothermal treatment for electrical power generation in Malaysia: A review. Sustainability 11(4): 1060.

Ibrahim, I., Hassan, M.A., Abd-Aziz, S., Shirai, Y., Andou, Y., Othman, M.R., Ali, A.A.M. & Zakaria, M.R. 2017. Reduction of residual pollutants from biologically treated palm oil mill effluent final discharge by steam activated bioadsorbent from oil palm biomass. Journal of Cleaner Production 141: 122-127.

Intarachandra, N., Siriworakon, S. & Sangmanee, T. 2019. Preparation of oil palm empty fruit bunch based activated carbon for adsorption of dye from aqueous solution. MATEC Web of Conferences 268: 06008-06013.

Jawad, A.H., Mamat, N.F.H., Abdullah, M.F. & Ismail, K. 2017. Adsorption of methylene blue onto acid-treated mango peels: Kinetic, equilibrium and thermodynamic. Desalination and Water Treatment 59: 210-219.

Jawad, A.H., Rashid, R.A., Ishak, M.A.M. & Wilson, L.D. 2016. Adsorption of methylene blue onto activated carbon developed from biomass waste by H2SO4 activation: Kinetic, equilibrium and thermodynamic studies. Desalination and Water Treatment 57(52): 25194-25206.

Jiang, C., Yakaboylu, G.A., Yumak, T., Zondlo, J.W., Sabolsky, E.M. & Wang, J. 2020. Activated carbons prepared by indirect and direct CO2 activation of lignocellulosic biomass for supercapacitor electrodes. Renewable Energy 155: 38-52.

Kannan, P., Nur Hanani Mansor, Mohd Haizal Zainal Abidin, Rusnani Md. Rus, Khairuman Hashim, Zaki Aman & Tan Say Peng. 2022. Operating model for partnership between smallholders and mills: A study in Perak and Johor, Malaysia. Oil Palm Industry Economic Journal 22(2): 27-41.

Keppetipola, N.M., Dissanayake, M., Dissanayake, P., Karunarathne, B., Dourges, M.A., Talaga, D., Servant, L., Olivier, C., Toupance, T., Uchida, S., Tennakone, K., Kumara, G.R.A. & Cojocaru, L. 2021. Graphite-type activated carbon from coconut shell: A natural source for eco-friendly non-volatile storage devices. RSC Advances 11(5): 2854-2865.

Khor, K.H., Lim, K.O. & Zainal, Z.A. 2009. Characterization of bio-oil: A by-product from slow pyrolysis of oil palm empty fruit bunches. American Journal of Applied Sciences 6(9): 1647-1652.

Kumar, K.V., Gadipelli, S., Wood, B., Ramisetty, K.A., Stewart, A.A., Howard, C.A., Brett, D.J.L. & Rodriguez-Reinoso, F. 2019. Characterization of the adsorption site energies and heterogeneous surfaces of porous materials. Journal of Materials Chemistry A 7: 10104-10137.

Lopes, G.K.P., Zanella, H.G., Spessato, L., Ronix, A., Viero, P., Fonseca, J.M., Yokoyama, J.T.C., Cazetta, A.L. & Almeida, V.C. 2021. Steam-activated carbon from malt bagasse: Optimization of preparation conditions and adsorption studies of sunset yellow food dye. Arabian Journal of Chemistry 14(3): 103001-103016.

Marrakchi, F., Ahmed, M.J., Khanday, W.A., Asif, M. & Hameed, B.H. 2017. Mesoporous activated carbon prepared from chitosan flakes via single-step sodium hydroxide activation for the adsorption of methylene blue. International Journal of Biological Macromolecules 98: 233-239.

May, J., Thoe, L., Surugau, N., Lye, H. & Chong, H. 2019. Application of oil palm empty fruit bunch as adsorbent: A review. Transactions on Science and Technology 6(1): 9-26.

Mopoung, S. & Dejang, N. 2021. Activated carbon preparation from eucalyptus wood chips using continuous carbonization–steam activation process in a batch intermittent rotary kiln. Scientific Reports 11(1): 13948-13957.

Mostapha, M., Azamkamal, F., Salleh, K.M., Amran, U.A., Gan, S. & Zakaria, S. 2021. Parameter optimization on esterified oil palm empty fruit bunch cellulose (OPEFB). Sains Malaysiana 50(12): 3719-3732.

Naher, L., Mazlan, N.A., Hamzah, N.A.B., Islam, S. & Ab Rhaman, S.M.S. 2022. Palm press fibre and rice straw for cultivation grey oyster mushroom (Pleurotus sajor-caju). Sains Malaysiana 51(5): 1305-1315.

Noor, H.A.R., Nor, F.M., Sharmeela, M. & Sharifah, A.S.A.K. 2014. Preparation and characterization of activated carbon from oil palm empty fruit bunch (EFB). Key Engineering Materials 594-595: 44-48.

Nur Sulihatimarsyila, A.W., Lau, H.L.N., Loh, S.K., Astimar, A.A., Zulkifli, A.R. & Choo, Y.M. 2017. Activated carbon from oil palm biomass as potential adsorbent for palm oil mill effluent treatment. Journal of Oil Palm Research 29(2): 278-290.

Odetoye, T.E., Afolabi, T.J., Abu Bakar, M.S. & Titiloye, J.O. 2018. Thermochemical characterization of Nigerian Jatropha curcas fruit and seed residues for biofuel production. Energy, Ecology and Environment 3(6): 330-337.

Radenahmad, N., Tasfiah, A., Saghir, M., Taweekun, J., Saifullah, M., Bakar, A., Reza, M.S & Kalam, A. 2020. A review on biomass derived syngas for SOFC based combined heat and power application. Renewable and Sustainable Energy Reviews 119: 109560.

Rafsanjani, H.H., Kamandari, H. & Najjarzadeh, H. 2013. Study on pore and surface development of activated carbon produced from Iranian coal in a rotary Kiln reactor. Iranian Journal of Chemical Engineering 10: 27-38.

Rahayu, D.E., Wirjodirdjo, B. & Hadi, W. 2019. Availability of empty fruit bunch as biomass feedstock for sustainability of bioenergy product (system dynamic approach). AIP Conference Proceedings 2194(1): 020095.

Rashid, R.A., Jawad, A.H., Ishak, M.A.B.M. & Kasim, N.N. 2018. FeCl3-activated carbon developed from coconut leaves: Characterization and application for methylene blue removal. Sains Malaysiana 47(3): 603-610.

Rashidi, N.A. & Yusup, S. 2017. A review on recent technological advancement in the activated carbon production from oil palm wastes. Chemical Engineering Journal 314: 277-290.

Reza, M.S., Yun, C.S., Afroze, S., Radenahmad, N., Bakar, M.S.A., Saidur, R., Taweekun, J. & Azad, A.K. 2020. Preparation of activated carbon from biomass and its’ applications in water and gas purification, a review. Arab Journal of Basic and Applied Sciences 27(1): 208-238.

Saad, M.J., Hua, C.C., Misran, S., Zakaria, S., Sajab, M.S. & Abdul Rahman, M.H. 2020a. Rice husk activated carbon with NaOH activation: Physical and chemical properties. Sains Malaysiana 49(9): 2261-2267.

Saad, M.J., Chin Hua, C., Zakaria, S., Sajab, M.S. & Misran, S. 2020b. Malaysia rice wastes for activated carbon production. Proceeding - 9th Kuala Lumpur International Agriculture, Forestry and Plantation Conference (KLIAFP9). hlm. 20-26.

Samiran, N.A., Jaafar, M.N.M., Chong, C.T. & Jo-Han, N. 2015. A review of palm oil biomass as a feedstock for syngas fuel technology. Jurnal Teknologi (Sciences & Engineering) 72: 13-18.

United Nations Development Programme. 2017. Goal 13: Climate Action. UNDP. https://www.my.undp.org/content/malaysia/en/home/sustainable-development-goals/goal-13-climate-action.html. Diakses 22 Jun 2023.

Wang, Y., Wang, L., Deng, X. & Gao, H. 2020. A facile pyrolysis synthesis of biochar/ZnO passivator: Immobilization behavior and mechanisms for Cu (II) in soil. Environmental Science and Pollution Research 27(2): 1888-1897.

Wei, X. & Li, T. 2021. Wooden activated carbon production for dioxin removal via a two-step process of carbonization coupled with steam activation from biomass wastes. ACS Omega 6(8): 5607-5618.

Wong, S., Ngadi, N., Inuwa, I.M. & Hassan, O. 2018. Recent advances in applications of activated carbon from biowaste for wastewater treatment: A short review. Journal of Cleaner Production 175: 361-375.

Yin, Y., Liang, D., Liu, D. & Liu, Q. 2022. Preparation and characterization of three-dimensional hierarchical porous carbon from low-rank coal by hydrothermal carbonization for efficient iodine removal. RSC Advances 12(5): 3062-3072.

Xu, J., Chen, L., Qu, H., Jiao, Y., Xie, J. & Xing, G. 2014. Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4. Applied Surface Science 320: 674-680.

Zainol, M.M., Amin, N.A.S. & Asmadi, M. 2017. Preparation and characterization of impregnated magnetic particles on oil palm frond activated carbon for metal ions removal. Sains Malaysiana 46(5): 773-782.

 

*Corresponding author; email: darfizzi@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous